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Abstract
Purpose – The purpose of this paper is to model housing price temporal variations and to predict price
trends within the context of land use–transportation interactions using machine learning methods based on
longitudinal observation of housing transaction prices.
Design/methodology/approach – This paper examines three machine learning algorithms (linear
regression machine learning (ML), random forest and decision trees) applied to housing price trends from
2001 to 2016 in the Greater Toronto and Hamilton Area, with particular interests in the role of accessibility in
modelling housing price. It compares the performance of the ML algorithms with traditional temporal lagged
regression models.
Findings – The empirical results show that the ML algorithms achieve good accuracy (R2 of 0.873 after
cross-validation), and the temporal regression produces competitive results (R2 of 0.876). Temporal lag effects
are found to play a key role in housing price modelling, along with physical conditions and socio-economic
factors. Differences in accessibility effects on housing prices differ bymode and activity type.
Originality/value – Housing prices have been extensively modelled through hedonic-based spatio-
temporal regression and ML approaches. However, the mutually dependent relationship between
transportation and land use makes price determination a complex process, and the comparison of different
longitudinal analysis methods is rarely considered. The finding presents the longitudinal dynamics of
housing market variation to housing planners.

Keywords Housing price modelling, Machine learning, Temporal lagged regression,
Longitudinal analysis, North America, Housing market analysis

Paper type Case report

1. Introduction
The purpose of this paper is to model housing price temporal variations and to predict price
trends within the context of land use–transportation interactions using machine learning
methods based on longitudinal observation of housing transaction prices. Housing is
fundamental to the security and well-being of households. Housing ownership is a major
source of personal wealth, and the housing market is a major component of regional and
national economies (Miles, 1994; Muellbauer and Murphy, 2008). Housing supply and prices
play a major role in the determination of travel patterns and so are fundamental to
transportation planning concerns as well. Planners implement policies aiming to regulate
the real estate market, provide affordable housing and curb speculation and market bubbles
(Barker, 2008; Jenkins et al., 2006; Oxley, 2004). Analysis and modelling of housing market
trends in a longitudinal manner would provide considerable insight to planners, academic
researchers and practitioners.

Location or accessibility is the key factor in housing decisions (Hu and Wang, 2019;
Levine, 1998; Quigley, 1985; Rodriguez and Rogers, 2014). Residential units with higher
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accessibilities to all types of activities are valued by home buyers and builders, which
increases housing prices. In turn, increased resident population increases transportation
demand, which influences the location of new transport facilities (Banister, 2001; Black,
2018; Morris et al., 1979). The positive feedback loop between land use and transport makes
housing price trends an emergent outcome of complex interactive processes (Farooq and
Miller, 2012; Rosenfield et al., 2013). Therefore, this paper also gives particular interests to
the spatio-temporal dynamics of housing prices and accessibility, with an objective to
reemphasize the role of accessibility in forming the housing price and to provide an
innovative perspective in regulating housing market and promoting sustainable urban
development.

In this study, the major research questions are:

RQ1. Choice of model formulation to best capture regional housing price dynamics; and

RQ2. Investigation of accessibility dynamics effects on housing prices.

Accessibility to various activities by different modes is measured, as well as the number of
neighbouring places of interest (POI), and the paper examines the impact of these factors on
housing price. Ordinary least square (OLSQ) regression, temporal lagged regression and
three machine learning (ML) algorithms are tested. The paper is organized as follows:
Section 2 summarizes the literature on the factors and methods used in housing price
modelling; Sections 3 and 4 describe the study area and the data used in the empirical study;
Section 5 discusses the econometric and ML methods tested; Section 6 presents the
estimation results for all models and compares the performance of the ML and econometric
models; conclusions and policy implications are discussed in Section 7.

2. Literature review
Housing price has been extensively modelled using several methods, most of which follow
the hedonic price framework (Rosen, 1974). Within this approach, housing can be
characterized as a bundle of services that fulfil consumers’ needs, and housing prices are
determined by the attributes of housing, constrained by the budget of utility-maximizing
consumers (Chau and Chin, 2003; Mason and Quigley, 1996; Mok et al., 1995; Rosen, 1974).
Housing price is, therefore, regarded as the explicit representation of the composite value of
a dwelling unit’s attributes (Rosen, 1974; Selim, 2009) and the value of the land upon which
the housing units are situated. Lieske et al. (2019) model the impact of transportation
infrastructure on housing price through a hedonic price model and find that urban design
characteristics such as street connectivity and road density significantly influence property
prices. Another stream of research analyzes housing prices from a macroscopic view,
considering the influence of macroeconomic attributes such as gross disposable income,
employment rate and gross domestic product within long-run demand–supply interactions
(Al-Masum and Lee, 2019; Apergis and Rezitis, 2003; Hossain and Latif, 2009; Leung et al.,
2006; Sari et al., 2007). Several findings indicate that hedonic price is still the mainstream in
forming the housing price.

Three major methods are used in modelling housing prices, vector or temporal
autoregression, spatial weighted regression and ML algorithms. Usman et al. (2020) review
the modelling of housing prices in different market segments and argue that the hedonic
price model exhibits aggregation bias due to the lack of coefficient spatial variation. While
the spatial weighted regressions could account for the spatial dependencies in housing
market modelling, P�aez et al. (2008) found that market segmentation is more effective than
several modelling techniques, including moving windows regression (MWR), geographic
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weighted regression (GWR) and moving windows Kriging (MWK). Local housing market
regulation policies could be evaluated through spatial regression such as mixed geographic
weighted regression (MGWR) (Crespo and Grêt-Regamey, 2013). Some recent papers use the
spatial regression to model the housing price (Soltani et al., 2021; Zhang et al., 2021) and
the impact of transportation on property price (Lieske et al., 2021). Temporal regression
better captures the price variation and changes in the effect of each determinant over time.
The endogeneity of land availability, interest rate, housing supply and demand over time
could be modelled through vector correction model (Kenny, 1999). Jadevicius and Huston
(2015) use auto-regressive integrated moving average (ARIMA) to predict the current
housing prices as a function of historical prices (and other factors) and find the temporal
autoregressive model to be useful to assess broad market price variations. Al-Masum and
Lee (2019) apply a temporal autoregressive model to investigate the long-term relationship
between housing prices and market fundamentals and find that Sydney housing prices can
be explained bymacroeconomic fundamentals.

ML algorithms are becoming widely used for housing price prediction. ML algorithms predict
housing prices without explicit modelling equations that represent the relationship between the
dependent and independent variables, but instead build the model “through experience”, i.e.
forecasting from the sample data, and improving the model performance through mathematical
optimization (Koza et al., 1996). Kauko (2010) apply neural network modelling to the housing
market of Helsinki, Finland, and identifies the housing market segmentation by classification
within the neural network. Park and Bae (2015) experiment with four different ML algorithms
with data including housing physical features, mortgage rates and school rating in Virginia, to
predict a binary dependent variable of whether the transaction price is higher than the listing
price or not. Chen et al. (2017) use a support vector machine (SVM) to forecast housing market
dynamics. The empirical results for Taipei City show that the model achieved high predictive
accuracy. The support vectors are selected from the stepwise multi-regression approach in the
first step, and then applied in SVM in the second step for the prediction. Phan (2018) uses the
combination of stepwise linear regression and SVM in predicting Melbourne housing prices.
Truong et al. (2020) present an empirical study of the housing prices in Beijing and compare
random forest, extreme gradient boosting (XGBoost), light gradient booting machine
(LightGBM), hybrid regression and stacked generalizationmodelling techniques.

3. Study area
The study area is the Greater Toronto and Hamilton Area (GTHA) (Figure 1), which is the
largest metropolitan area in Canada. The GTHA has 9,183 dissemination areas (DAs). The
GTHA area is 8,244 km2, and its population was 7.36 million in 2020 (projected to be 8.6
million by 2031) (Statistics Canada Population estimates, July 1, by census metropolitan area
and census agglomeration, 2016 boundaries, 2020).

In recent decades, the GTHA has been among the fastest-growing large metropolitan
areas in the high-income world and became the principal commercial centre in Canada. The
old City of Toronto provides a strong and dense central core for the region, including being
the financial capital of Canada. But, like most North American cities, considerable
suburbanization has occurred, starting post-Second World War, leading to the current large
urban metropolitan region. The development of new cities in the GTHA brought
more economic potential into this metropolitan area, which boosts the economy with more
investments (capital), immigrants (labour) and land development. GTHA housing prices
have increased considerably in the past 20 years. The 2016 average unit housing price is
almost three times that of 2001 (Figure 2). The population inflow increased the housing
demand, which raised housing prices, and induced further real estate investment as a result.
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4. Data
Following the framework of Rosen (1974), the housing price models developed in this paper
incorporate several factors in four aspects: built form, location, neighbourhood socio-
economic characteristics and housing physical condition. To examine the effects of
accessibility on housing prices, the accessibility to jobs and people, by transit and car, is
measured. POI represents the places for multiple activities, including restaurants, shopping

Figure 1.
The GTHA

Figure 2.
Average GTHA unit
housing prices, 2001
to 2016
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centres, health-care facilities, schools, etc. Proximity to these activities is assumed to affect
housing price positively. The variables and corresponding indicators are listed in Table 1.
Housing transaction prices are represented by the average housing transaction price per sq.
m. in each DA. DAs are the smallest geographic unit for which Canadian census data are
routinely available. DA populations typically range from 400 to 700 people. Data provided
by Teranet Inc. track the housing transactions from 1986 to 2016 in the GTHA, providing
this study with a longitudinal record of housing price.

The spatial distribution of housing prices changes is shown in Figure 3, which maps GTHA
housing unit price is mapped. In general, the suburban regions are the fastest growing, and the
downtown area even displaying pockets of price decreases. From the distribution, it is seen that
the real estate market “hot spots” have extended from several centres (downtown Toronto and
some other subcentres) to a wider range across the suburban region. The middle-price housing
units spread and cover more suburban regions over time. The spatial pattern of the housing
price evolution clearly demonstrates the urban sprawl process through the past two decades in
the GTHA. The suburban price increases might be explained by the improvement in
accessibility throughout the suburban area. In the early 21st century, regions in the GTHA
were not as connected as they currently are in terms of transportation and economy. With the
development and extension of the transportation network and increasingly connected economy
of different districts in the GTHA, the region became more connected as one entity, and the
higher housing price locations became more continuous and extended alongside the
transportation network. This trend is particularly easily seen from 2011 to 2016, as shown in
the left bottom map of Figure 3, in which the major housing price increases occur in the
midtown or suburban areas that are well connected to major regional highways.

Housing price follows a left-skewed distribution, as shown in Figure 4, while the peak of
the density curve (median) moves rightwards, indicating increasing prices over time.
Another observation is that the variance of the curve becomes larger, and the peak density
drops considerably over time, which implies smaller differences in prices for all housing
units. This coincides with the Figure 3 spatial trends. In comparison, even though the
distribution of housing prices follows the same pattern with the income distribution,
housing price experiences drastic growth while income remains almost the same.

In terms of built form, several indicators representing the land use composition of each
DA are used. Variables include percentage of residential land, industrial land, park and
recreational land and open area, to represent the surrounding land use. It is expected that the
DAs with a higher degree of mixed land use will have lower housing prices, and higher
percentage of residential, park and recreational land use, lower percentage of industrial land
will increase the overall housing price in the DAs. The land use percentage indicators are
calculated byDMTI Spatial.

To examine the effect of accessibility on housing price, several measures are used. First,
standard gravity accessibilities to people and jobs are computed using equations (1) and (2)
with impedance function based on average travel times bymode as follows:

Lt
i ¼

Xn
j¼1

Et
j � e�bCt

i;j (1)

Mt
i ¼

Xn
j¼1

Et
j � e�bFt

i;j (2)

where Lt
i and Mt

i indicate the accessibility of zone i at time t by transit and by road
networks, respectively, Ej is the number of people or jobs in zone j, b is the distance
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Description of
variables
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decay parameter, Ci,j and Fi,j are the travel times between zone i and zone j by transit
and road networks, respectively. The higher the value of Lt

i and Mt
i , the better

accessibility could be acquired by zone i at time t. The distance decay parameter b was
set to 0.05, as the classical first-order estimate of b is 1/(average travel time), and the
trip-weighted travel time by auto and transit combined in the GTHA was
approximately 20 min over the study period. Travel times for auto and transit were
calculated from the transportation tomorrow survey (TTS), one of the largest and
longest running household travel surveys that is conducted every five years, covering
approximately 5% of the GTHA households at every survey wave and the travel
behaviour of people greater than ten years of age. The O-D travel time matrices were
calculated between traffic analysis zones (TAZs) using EMME model, assuming zero

Figure 3.
Housing price
variation (increments
or decreases) from
2001 to 2016 in the
GTHA

Figure 4.
Housing transaction
prices and income
distribution in the
GTHA
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congestion conditions as well as under peak AM conditions. The accessibility
measurements are calculated by TAZs and converted to the census dissemination areas
by area-weighted interpolation in ArcGIS. Second, several isochrone measures are
included, representing local access to daily activities (restaurants, grocery stores,
health-care facilities, etc.) using the number of POI within the buffered area (0–400 and
400–800m) of the centroid of each DA. Finally, neighbourhood road density, transit line
density and trip density, calculated by TAZs and interpolated to the DA level, are also
included as potential explanatory variables.

For housing physical conditions, data from the Canadian Census are used and include
variables of house age, size (number of rooms), crowdedness (number of persons per room),
conditions on maintenance and repairs in the model. Newer housing units with less need for
repairs are expected to be pricier.

In terms of socio-economic characteristics, educational degree, income, employment rate
and dwelling density are the assumed influential factors, all of which are obtained from the
Census.

Prior to modelling, the base data were prepared and cleaned. The original data set
from Teranet Inc. was spatially joined with DA shapefiles and land use types within the
GTHA. A new data set was then created by extracting the DA, total price, x-y
coordinates and residential land use types for the years of 1996, 2001, 2006, 2011 and
2016. While Teranet sales data are available for every year, Census data are only
available for these years, and so the time-series analysis worked with five-year time
steps. The average price of each condominium unit was formulated by constricting the
land use type to condominiums and getting the average price of transactions within the
same x-y coordinates. Unit prices for all residential land use types were then formulated
by dividing prices by areas. Housing units with total price below CAD$50,000 and
above AD$5,000,000, or units with unit price less than AD$500 and above CAD$10,000
CAD were identified as outliers and removed from the data set. The unit prices were
then aggregated and averaged per DA. Census and DMTI land use variables for the
years of 2001, 2006, 2011 and 2016 were prepared separately based on DAs. These
Census and DMTI variables were then joined to the data set based on the relevant DA
and year to create a combined data set with DA, year, unit price and the land use
variables. Null values were then removed from the data set to prepare it for ML
algorithm implementation. A one-step time lag was then implemented into the data
with the unit price of the analysis year before: e.g. for the year of 2001, the unit prices of
1996 were included in the data set.

5. Method
5.1 Ordinary least square regression and temporal lagged regression models
Before undertaking ML modelling, two linear regression models were first estimated to find
the importance of each factor and to provide a comparison with the ML results. The first
model, OLSQ regression, was formulated in equation (3) as follows:

Yi;t ¼ a þ
Xn
k¼1

b kXi;k þ e i (3)

where Yi,t is the average housing transaction price in DA i in year t, Xi,k is the kth

explanatory variable for DA i (variables include housing physical condition, locational

Machine
learning



characteristics, built form and socio-economic features), b k is the parameter associated the
kth explanatory variable and e i is a normally distributed error term.

The second model tested in a temporal lagged regressive model, which follows the basic
structure of the OLSQ, except for additional time lag variables among the explanatory
variables. Stationary time series can be modelled through moving average (MA), auto-
regressive process (AR), mixed auto-regressive moving average (ARMA), while non-
stationary time series can be modelled using several possible transformations (logarithmic
or other non-linear transformation) or ARIMA models (Ahn and Reinsel, 1990; Harrison
et al., 2003; Hsiao, 1982). A lagged dependent variable was added to represent the temporal
correlations in the model as follows:

Yi;t ¼ a þ gYi;t�1 þ
Xn
k¼1

b kXi;k þ e i (4)

where Yt�1 is the average housing transaction price of the DA in time period t – 1, which
should have an influence on the current housing price. Further time lags such as t – 2 and t –
3, are not included in the model as the effects of previous years are assumed to be captured
in Yt –1. In this study, since the influential factors such as land use and the socio-economic
factors change slowly over time, and Census data are only available in five-year intervals, a
time lag of five years is used, e.g. 2011 prices are used to model 2016 prices, and 2006 prices
are used to model 2011 prices.

5.2 Machine learning algorithms
The ML-ready data set was used to develop three supervised ML models. Supervised
ML uses data with known labels (observed dependent variables), as opposed to
unsupervised ML, which uses data with no labels (Kotsiantis et al., 2007). Linear
regression, random forest regression and decision tree regression models, with and
without implementing time lags, initially using default parameters. In total, 80% of the
data set was used for training purposes, while the remaining 20% was used for testing
purposes.

The linear regression ML algorithm fits a linear model and predicts values within a
continuous range rather than categorical values, and has been used widely in price
modelling (Goodfellow et al., 2016; Kavitha et al., 2016). The decision tree ML algorithm is
used to visually represent decisions and decision-making. The decision tree model consists
of a tree with an arbitrary number of nodes, and branches that are connected to each node.
Decisions are made by performing tests at each branch and proceeding to a corresponding
node related to the result of the performed test. This is done until the terminal node is
reached (Kitts, 1997), which represents the outcome of the model. Though a commonly used
tool in data mining for deriving a strategy to reach a particular goal, it is also widely used in
machine learning (Dietterich and Kong, 1995; Navada et al., 2011; Somvanshi et al., 2016). A
disadvantage of a decision tree model is that the likelihood of overfitting to the data tends to
increase as the size and complexity of the tree grows (Al-Akhras et al., 2021). The decision
tree model, however, is advantageous, in the sense that it can be used for both classification
and regression problems. The random forest ML algorithm (Breiman, 2001; Breiman et al.,
2011) builds a “forest” from an ensemble of decision trees while monitoring the strength of
individual trees, correlation between the trees, errors and variable importance (Breiman,
2001). The random forest model adds an additional layer of randomness through bootstrap
aggregating (bagging) by forcing each split to consider only a randomly chosen subset of
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candidate predictors, instead of the full set. Furthermore, the generalization error of the
model, which is a measure of the accuracy of the model of predicting correct values from
unseen data, converges to a limit as more decision trees are added to the forest. This
eliminates overfitting after a certain threshold, which is an advantage of random forest
models over decision tree models (Breiman, 2001).Furthermore, similar to decision trees, a
significant advantage of the random forest approach is that it can be used for both
classification and regression problems, which form the majority of current machine learning
systems (Cutler et al., 2012).

5.3 Performance evaluation
Model performance is assessed using four standard goodness-of-fit measures: R2, mean
absolute error (MAE), mean square error (MSE), root mean square deviation (RMSD) and the
goodness-of-fit (R2):

MAE ¼
Xm

i¼1
jYi � ^Yij
m

(5)

MSE ¼ 1
m

Xm
i¼1

Yi � Ŷi

� �2
(6)

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
Yi � Ŷi

� �2
m

s
(7)

R2 ¼ 1�
Xm
i¼1

Yi � Ŷi

� �2
Yi � Y
� �2 (8)

where Yi stands for the observed value, Ŷi stands for the model predicted value and Y
stands of the average of the total observed value.

6. Housing price modelling
6.1 Ordinary least squares regression and temporal lagged regression models
To identify the importance of the factors and temporal effect in determining housing price,
an OLSQ regression model and a temporal lagged regression model were estimated.
Parameter estimation results are shown in Table 2.

6.1.1 Physical conditions. In general, variables describing housing physical conditions,
built form and accessibility all show significant influence in determining housing prices.
The age of the housing units shows a slightly negative influence. Housing size shows
significant positive impact on price, while crowding (number of persons per room) was not
significant. Figure 5 shows that in 2001 and 2006, housing price mainly increased in the
downtown area and regional subcentres, the centrality of which attracts residents even
though housing units are generally smaller or more crowded in these areas. Nevertheless, in
2011 and 2016, housing prices increase in suburban areas, especially in the middle part of
the GTHA alongside highways (e.g. Vaughan and Richmond Hill), as both the

Machine
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transportation network and transit lines improved and extended. The switch indicates that
more households prefer the less dense suburban area well connected to the transportation
network. DAs with higher percentage of housing units that need major repair have higher
housing prices, which contradicts with our expectations that maintenance decreases the
housing value but is likely be due to gentrification effects in these older neighbourhoods.

6.1.2 Accessibility and housing price. The coefficients of accessibility show interesting
phenomena, in that accessibility by mode has different effects by activity type. The
expectation of the coefficients of accessibility indexes are positive, as higher accessibility
would always increase the attractiveness of the location, and hence raise the housing price;
however, the results indicate that housing units that have better access to jobs by transit, or
better access to all activities by cars have higher prices. The overall accessibility by cars
increases housing price, as shown in Table 2, while public transit accessibility has a
negative effect, indicating that the housing units located at the regions with higher auto
accessibility, but lower transit accessibility, have higher price. This phenomenon flips with
respect to job accessibility, i.e. places with higher job accessibility by transit are pricier.
Transit line density also has significant positive correlation with housing prices. Trip
density is negatively related to housing price, as Figure 5 shows that the central region with
dense trip flow like downtown area did not increase much in the housing price. Not all of the
accessibilities to multiple facilities in the surrounding show significant influences, among
which number of health-care facilities within 800m, number of primary and secondary
schools within 400m and number of childcare facilities within 400m show significant
positive influence on housing price.

6.1.3 Socio-economic factors. Neighbourhood socio-economic variables show significant
influence in determining housing prices. Average household income shows positive effect on
housing price, as expected, and DAs with higher number of residents with a post-secondary
degree also have higher housing prices (possibly an indication of neighbourhood “status”).
The coefficients of employment rate are significantly negative, which might result from a
collinearity problem. A Farrar–Glauber test (F-test) was conducted for the location of the
multicollinearity, and the variance inflation factor (VIF) and Klein factor both show that
employment rate might be non-significant due to multicollinearity. Built form (composition
of land use of each DA) shows significant influence in the regression without the time lag
variable, which reflects that the land use changes slowly over the years, and the time lag
variable could obscure some of the land use composition effect. The percentages of
residential land and open area show significant positive signs and percentage of industrial
land affects the housing price negatively, as expected.

6.1.4 Temporal lag in housing price. Addition of a time lag variable (the average DA
price in the previous time step) significantly improves the performance of the model, for

Figure 5.
Linear regression
performance
(predicted vs actual
values)
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which the R2 increases from 0.76 to 0.87. Housing price was well modelled through the
estimation based on the factors from the four aspects but becomes less predictable in more
recent years. As more investors entered the housing market in the past five to ten years,
investment and speculation demand increased, the rational of which is not limited to the
land use, location, physical condition factors considered in the model. Speculative behaviour
can be explained by the expectation that housing values will further appreciate in the future
(Fox and Tulip, 2014). In addition, real estate development projects target different
submarkets, including condominiums in the city centre and houses in suburban areas,
which adds to the heterogeneity in residential development. The increasing complexity over
time from both the demand and supply side increases the uncertainty in modelling housing
prices. Modelling with a time lag largely improved the goodness of fit, indicating that the
housing prices are largely following the trend of the previous year, and the time lag might
result from the market response in investment demand, as investors rely heavily on the
historical housing price records in their decision-making. This also indicates that housing
price determination is a complex process and is driven by factors in addition to the
explanatory variables used in this model, with the more implicit dynamics contained in the
lag variable.

The interrelations and mutual dependence among residential construction, commercial
property and transportation development through the accessibility factors further increase
the uncertainty, which cannot be modelled through the OLSQ model. In the next section,
several ML algorithms are tested to compare their performance with the regression models.

6.2 Machine learning
Several iterations of performance tuning were undertaken to optimize the solutions for each
model. twomethods were considered for tuning: grid search and random search. Grid search
is an exhaustive method in which a grid of hyperparameter values is set up to test each
combination of hyperparameter values, and random search is a method in which the same
grid is set up to test random combinations of hyperparameter values (Worcester, 2019).
Random search was chosen as the method to tune the model as it is computationally less
expensive.

As shown in Table 3, random forest regression outperforms other algorithms and
achieves the lowest MAE, MSE and RMSD, as well as the highest R2. After adding the
lagged variable into the training model, the random forest regression, decision trees
regression and linear regression models all reach R2 values of above 0.82, with random
forest regression reaching an R2 value of around 0.873. This demonstrates that ML models
can serve as a tool for accurate housing price prediction compared to regular linear
regressionmodels.

Table 3.
Prediction results of

linear regression,
random forest
regression, and
decision trees

regression

Index
Linear regression Random forest regression Decision trees regression
a* b A b a b

MAE 524.212 353.043 377.159 295.265 478.403 344.113
MSE 658,962.775 372,711.048 384,542.570 262,473.987 622,515.290 371,883.019
RMSD 811.765 610.501 620.115 512.322 788.996 609.822
R2 0.682 0.820 0.815 0.873 0.708 0.824
Adjusted R2 0.680 0.819 0.813 0.872 0.706 0.823

Note: *a, b indicates without and with time lag, respectively
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To test for data overfitting, k-folds cross-validation was applied on the time-lagged variants
of the three models with ten folds. K-folds cross-validation trains a model using K-1 of the
folds as the training data and applies the resulting model on the remaining data to compute
performance scores (Ojala and Garriga, 2010). Through this method, the mean ten-fold R2,
mean ten-fold MAE, mean ten-fold MSE and the mean ten-fold RMSD were computed and
compared to the initial MAE, MSE, RMSD and R2 that were generated after making
predictions on the test data.

After applying k-folds cross-validation, it was found that there was a degree of
overfitting in all of the models, which likely occurred due to noisiness in the data and a high
number of variables. To reduce overfitting, feature selection was attempted to lower the
total number of variables. Two different approaches to feature selection were considered: the
filter method and the wrapper method. Filter methods are independent of the ML model
used, whereas wrapper methods use the chosen ML model to choose optimal features
(Maldonado and Weber, 2009). To maintain consistency in the chosen variables for each
model, the filter method of computing Pearson’s correlation coefficients for features and
choosing the k best features was attempted. The number of features were iteratively reduced
using this method to find the optimal ten-fold MAE, ten-fold MSE, ten-fold RMSD and ten-
fold R2 while minimizing overfitting for each model. Ultimately, feature selection was not
found to reduce overfitting significantly or increase model performance, and as such, was
not used in any of the final models (Tables 3 and 4).

6.2.1 Linear regression machine learning model. The ML model that applies linear
regression improves significantly (Figure 5) after including the lagged variable,
significantly reducing the RMSD and increasing the adjusted R2. The coefficients of the
linear regression model are outlined in Table 5.

6.2.2 Decision trees regression machine learning model. The decision trees regression
model performs similarly to the linear regression model and performs slightly better than
the linear regression model in terms of RMSD. The hyperparameters were tuned using
random search, with the optimal max_depth being 10. The predicted values against actual
values are plotted in Figure 6.

The two decision tree regression models (with and without lagged variables) give the
same prediction of housing prices for several different actual values, which compromises the
accuracy of this method. As the likelihood of overfitting to the data positively correlates
with an increase in the size and complexity of the decision tree (Al-Akhras et al., 2021),
decision trees can be prone to overfitting, which can undermine model validity. As such, it is
found that random forest regression is a better choice in housing pricing modelling. The
generalization error of a random forest model converges to a limit as more decision trees are
added to the forest, which limits overall model overfitting to a certain threshold (Breiman,
2001).

Table 4.
Mean ten-fold cross-
validation results of
linear regression,
random forest
regression and
decision trees
regression

Index
Linear regression Random forest regression Decision trees regression
a b a b a b

MAE 562.089 379.132 482.876 358.116 636.677 413.130
MSE 722,895.134 396,408.382 540,855.351 338,970.365 1,088,499.222 554,525.510
RMSD 797.413 595.027 689.334 546.789 941.566 677.435
R2 0.466 0.693 0.606 0.750 0.284 0.611
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In the rank of the feature importance, time lag is once again shown to be the most effective
factor when included, whether the year is 2016, the average household income and
population accessibility by car are the most effective factors when the lagged variable is not
included. All the feature importance values for the decision trees regression model are
outlined in Table 6.

The performance of the three ML algorithms in predicting housing prices suggests that
temporal effects play an important role. Random forest regression outperforms the other two
algorithms and achieves an adjusted R2 of 0.872. Given the relatively similar performance of
the two approaches, it is suggested that the temporal lagged regression approach may be
preferred, as it provides greater insights into the significance of explanatory variables,
which is important in supporting housingmarket policy analysis.

Table 5.
Coefficients for linear

regression ML

Variable Coefficient
Coefficient with
lagged variable Variable Coefficient

Coefficient with
lagged variable

lag 0.907 prk4_x �14.735 �7.608
hage �4.336 �0.514 prk8_x 17.942 11.19
nr 175.555 83.694 rel4_x 20.756 9.021
nper 514.171 120.317 rel8_x �0.87 2.571
maj_repair 3.916 1.055 sch4_x �16.403 �9.959
high_sch 0.076 �0.214 sch8_x 1.145 4.132
ps_certdip 1.039 0.623 smt4_x 18.388 5.555
ps_deg 2.217 0.915 smt8_x �6.291 �4.342
Avg_HHinc 0.007 0.001 chd4_x 27.625 19.312
dweld �0.038 �0.023 chd8_x �0.139 �3.312
emp �1.532 �0.577 ACAR 0.001 0.001
pres 0.979 0.778 ATRAN �0.005 �0.003
pind 0.189 0.382 JACAR �0.001 �0.001
ppark 0.673 �0.11 JATRAN 0.012 0.006
popen 3.349 1.582 RD_DEN �8.057 �2.982
eat4_x �3.95 �2.288 TR_DEN 66.961 49.683
eat8_x 2.633 1.061 TDEN �0.009 �0.004
grc4_x �0.574 1.735 year_2001 �623.191 �324.018
grc8_x �23.69 �7.476 year_2006 �96.477 �58.363
hcr4_x 4.858 1.893 year_2011 �211.217 �207.802
hcr8_x 4.277 1.204 year_2016 930.885 590.183

Figure 6.
Decision trees

regression
performance
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6.2.3 Random forest regression machine learning model. The random forest regression ML
model initially showed promising results with default parameters. To further optimize
performance, the hyperparameters within the model were tuned. The tuned
hyperparameters were the “number of decision trees per forest” (n_estimators), “minimum
number of samples required to split an internal node” (min_samples_split), “minimum
number of samples required to be at a leaf node” (min_samples_leaf), “number of features to
consider when looking for the best split” (max_features), “maximum depth of the tree”
(max_depth) and “whether bootstrap samples are used when building trees” (bootstrap)
(scikit-learn developers, 2020). The random search method was used to discover the optimal
hyperparameters, which were found to be 800 for n_estimators, 2 for min_samples_split, 2
for min_samples_leaf, square root for max_features, 50 for max_depth and false for
bootstrap. The results after tuning the random forest regression model are shown in
Figure 7.

Table 6.
Feature importance
values for decision
trees regression

Variable Feature importance
With lagged
variable Variable Feature importance

With lagged
variable

lag 0.878 prk4_x 0.001 0.000
hage 0.008 0.005 prk8_x 0.004 0.001
nr 0.024 0.006 rel4_x 0.001 0.001
nper 0.007 0.001 rel8_x 0.000 0.001
maj_repair 0.002 0.000 sch4_x 0.001 0.002
high_sch 0.002 0.001 sch8_x 0.002 0.001
ps_certdip 0.005 0.002 smt4_x 0.001 0.001
ps_deg 0.008 0.003 smt8_x 0.003 0.001
Avg_HHinc 0.323 0.015 chd4_x 0.001 0.000
dweld 0.014 0.002 chd8_x 0.001 0.001
emp 0.003 0.001 ACAR 0.123 0.006
pres 0.008 0.004 ATRAN 0.005 0.005
pind 0.001 0.001 JACAR 0.052 0.007
ppark 0.002 0.000 JATRAN 0.021 0.002
popen 0.002 0.001 RD_DEN 0.011 0.002
eat4_x 0.000 0.001 TR_DEN 0.005 0.001
eat8_x 0.002 0.001 TDEN 0.004 0.001
grc4_x 0.001 0.000 year_2001 0.010 0.001
grc8_x 0.002 0.001 year_2006 0.000 0.001
hcr4_x 0.002 0.001 year_2011 0.007 0.000
hcr8_x 0.003 0.002 year_2016 0.327 0.037

Figure 7.
Random forest
regression
performance
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Tuning the model increases the model fit, especially after adding the time-lagged variable.
In the rank of the feature importance, it is seen that the time lag is the most effective factor
when included, and that the average household income, whether the year is 2016 and the
number of post-secondary bachelors or above degree holders in the labour force are the most
effective factors when the lagged variable is not included. All the feature importance values
for the random forest regression model are listed in Table 7.

7. Discussion
Housing price has been extensively researched in terms of behavioural mechanisms,
determinants and influential factors, including the effects of temporal variation in both the long
and short term. The transportation and land use interaction process includes multiple dynamics
over time and space, which is more of a black box rather than a simple combination of a set of
factors. In consequence, housing price is difficult to predict precisely through the conventional
hedonic-based framework. ML as a new modelling technique emerging over recent years uses
mathematic optimization algorithms in decision-making, including application in predicting
housing prices. Planners and practitioners should recognize the complex determination process
of housing price when analyzing the housing market condition and apply proper modelling
method. Following the hedonic housing price framework, this study compares the performance
of temporal lagged models and three ML algorithms in modelling housing prices in the GTHA
for 2001, 2006, 2011 and 2016. The results show that temporal lagged models achieve an R2 of
around 0.87, which is competitive with ML models. In addition, among the ML models, random
forest (RF) is found to have the best predictive performance.

In all the models tested, accessibilities show significant influence on housing price.
Housing planners should pay close heed to the accessibility provided by the transportation
system, especially to jobs by transit, when implementing affordable housing programmes to

Table 7.
Feature importance
values for random
forest regression

Variable Feature importance
With lagged
variable Variable Feature importance

With lagged
variable

lag 0.335 prk4_x 0.006 0.005
hage 0.014 0.009 prk8_x 0.014 0.010
nr 0.046 0.026 rel4_x 0.003 0.002
nper 0.073 0.053 rel8_x 0.007 0.004
maj_repair 0.005 0.003 sch4_x 0.003 0.002
high_sch 0.013 0.008 sch8_x 0.006 0.004
ps_certdip 0.020 0.012 smt4_x 0.002 0.002
ps_deg 0.077 0.051 smt8_x 0.007 0.004
Avg_HHinc 0.170 0.115 chd4_x 0.002 0.001
dweld 0.018 0.011 chd8_x 0.017 0.012
emp 0.011 0.007 ACAR 0.069 0.045
pres 0.011 0.007 ATRAN 0.029 0.018
pind 0.003 0.002 JACAR 0.065 0.038
ppark 0.005 0.003 JATRAN 0.037 0.025
popen 0.008 0.005 RD_DEN 0.012 0.007
eat4_x 0.005 0.003 TR_DEN 0.010 0.006
eat8_x 0.010 0.007 TDEN 0.013 0.008
grc4_x 0.003 0.002 year_2001 0.028 0.022
grc8_x 0.007 0.005 year_2006 0.008 0.005
hcr4_x 0.004 0.003 year_2011 0.023 0.015
hcr8_x 0.010 0.006 year_2016 0.125 0.093
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prevent the mismatches between the locational preference of targeted groups and project
location. The positive effect of accessibility to people by car on housing price indicates that
less dense areas with attractive environments that are well connected to the road network
are still preferred by home buyers, which might encourage continuing urban sprawl. To
keep a balance between jobs and housing, residential projects within walkable or transit-
accessible distance to job centres should be encouraged, and transit-oriented communities in
suburbs could be considered. The negative relationship between accessibility to people by
transit and housing price indicates that the current transit coverage might not be
comparable to that of the road network. People living in suburban areas rely heavily on
autos, whose preference might not be easy to alter.

This study has several limitations. Due to data availability, the study only analyzes
prices in Canadian Census years – 2001, 2006, 2011 and 2016, instead of building a fully
temporal autoregression on each year from 2001 to 2016. The time interval of five years may
be too long to fully capture temporal effects in price variation. Only three ML algorithms are
tested in this study. More empirical studies with multiple modelling techniques should be
done to extend the temporal modelling of housing price and to better understand the
temporal dynamics of transportation and housing development.
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